Manuals and instructions for everything

why notch is provided in impact test

Before looking at impact testing let us first define what is meant by 'toughness' since the impact test is only one method by which this material property is measured. Toughness is, broadly, a measure of the amount of energy required to cause an item - a test piece or a bridge or a pressure vessel - to fracture and fail. The more energy that is required then the tougher the material. The area beneath a stress/strain curve produced from a tensile test is a measure of the toughness of the test piece under slow loading conditions. However, in the context of an impact test we are looking at notch toughness, a measure of the metal's resistance to brittle or fast fracture in the presence of a flaw or notch and fast loading conditions. It was during World War II that attention was focused on this property of 'notch toughness' due to the brittle fracture of all-welded Liberty ships, then being built in the USA. From this work the science of fracture toughness developed and gave rise to a range of tests used to characterise 'notch toughness' of which the
Charpy-V test described in this article is one.

There are two main forms of impact test, the Izod and the Charpy test. Both involve striking a standard specimen with a controlled weight pendulum travelling at a set speed. The amount of energy absorbed in fracturing the test piece is measured and this gives an indication of the notch toughness of the test material. These tests show that metals can be classified as being either 'brittle' or 'ductile'. A brittle metal will absorb a small amount of energy when impact tested, a tough ductile metal a large amount of energy. It should be emphasised that these tests are qualitative, the results can only be compared with each other or with a requirement in a specification - they cannot be used to calculate the fracture toughness of a weld or parent metal, such as would be needed to perform a fitness for service assessment. Fracture toughness tests that can be used in this way are covered in other Job Knowledge articles (Job Knowledge 76 77).

The Izod test is rarely used these days for weld testing having been replaced by the Charpy test and will not be discussed further in this article. The Charpy specimen may be used with one of three different types of notch, a 'keyhole', a 'U' and a 'V'. The keyhole and U-notch are used for the testing of brittle materials such as cast iron and for the testing of plastics. The V-notch specimen is the specimen of choice for weld testing and is the one discussed here. The current British Standard for Charpy testing is BS EN ISO 148-1:2009 and the American Standard is ASTM E23. The standards differ only in the details of the strikers used. The standard Charpy-V specimen, illustrated in Fig. 1. is 55mm long, 10mm square and has a 2mm deep notch with a tip radius of 0. 25mm machined on one face. Notch-Toughness Notch toughness is the ability that a material possesses to absorb energy in the presence of a flaw. As mentioned previously, in the presence of a flaw, such as a notch or crack, a material will likely exhibit a lower level of toughness.

When a flaw is present in a material, loading induces a triaxial tension stress state adjacent to the flaw. The material develops plastic strains as the yield stress is exceeded in the region near the crack tip. However, the amount of plastic deformation is restricted by the surrounding material, which remains elastic. When a material is prevented from deforming plastically, it fails in a brittle manner. Notch-toughness is measured with a variety of specimens such as the Charpy V-notch impact specimen or the dynamic tear test specimen. As with regular impact testing the tests are often repeated numerous times with specimens tested at a different temperature. With these specimens and by varying the loading speed and the temperature, it is possible to generate curves such as those shown in the graph. Typically only static and impact testing is conducted but it should be recognized that many components in service see intermediate loading rates in the range of the dashed red line.

  • Views: 191

why does my canon camera say card locked
why does duct tape glow when pulled apart
why do you heat treat a knife
why do you fast before blood work
why do you fast before blood test
why do we measure force in newtons
why do we fast before a blood test